книга Курсовая.Су
поиск
карта
почта
Главная На заказ Готовые работы Способы оплаты Партнерство Контакты Поиск
"Автономные системы с одной степенью свободы" ( Курсовая работа, 45 стр. )
"Дискретная математика" е3535343 ( Контрольная работа, 4 стр. )
"Дискретная математика" 457пв ( Контрольная работа, 4 стр. )
"Интегрирование дифференциальных уравнений степенными рядами" ( Дипломная работа, 47 стр. )
"Нефон-неймановская" архитектура. Совершенствование и развитие внутренней структуры ЭВМ 524242 ( Контрольная работа, 14 стр. )
"Нильпотентные группы" ( Курсовая работа, 40 стр. )
"Основные понятия теории множеств". ( Контрольная работа, 2 стр. )
"Предельные циклы дифференциальных систем" ( Курсовая работа, 37 стр. )
"Пространство квазимногочленов и их использование в теории дифференциальных уравнений" ( Курсовая работа, 37 стр. )
"Теоремы Силова и их применение к группам малых порядков" ( Курсовая работа, 40 стр. )
(Основы линейного программирования) КРАТНЫЕ ИНТЕГРАЛЫ ( Курсовая работа, 29 стр. )
*-АЛГЕБРЫ И ИХ ПРИМЕНЕНИЕ (Украина) ( Дипломная работа, 56 стр. )
*-АЛГЕБРЫ И ИХ ПРИМЕНЕНИЕ (Украина) ( Курсовая работа, 56 стр. )
. нахождение экстремума при помощи второй производной е35353 ( Контрольная работа, 28 стр. )
. Если множество , то: а) ; б) ; в) ; г) . Какие из вышеперечисленных высказываний истинны, а какие ложны? 7864е4 ( Контрольная работа, 2 стр. )
. Найти решение уравнения 8555 ( Контрольная работа, 11 стр. )
. Найти среднее арифметическое, медиану, моду, среднее геометрическое, размах, среднее квадратическое отклонениедисперсию, коэффициент вариации. н79-0-75 ( Контрольная работа, 8 стр. )
. Найти среднее арифметическое, медиану, моду, среднее геометрическое, размах, среднее квадратическое отклонение, дисперсию, коэффициент вариации. 7342 ( Контрольная работа, 8 стр. )
. НАХОЖДЕНИЕ ОПТИМАЛЬНОГО РАСПРЕДЕЛЕНИЯ КАПИТАЛА НА ПРИОБРЕТЕНИЕ ТРЕХ ОБЪЕКТОВ ЛИЗИНГА 7462 ( Курсовая работа, 33 стр. )
. Пусть А – нарушение или оспаривание прав, В – потребитель может обращаться в суд с иском о защите своих прав и охраняемых интересов ( Контрольная работа, 3 стр. )
. Теорема Хаавельмо ц44342 ( Контрольная работа, 9 стр. )
.Механизм, средства и методы формирования понятий у детей 23422 ( Курсовая работа, 39 стр. )
01 вариант КузГТУ ( Контрольная работа, 6 стр. )
031 Теория вероятностей ( Контрольная работа, 4 стр. )
04 вариант ( Контрольная работа, 3 стр. )

3. 1. Дана линейная оболочка , где , , , . Выяснить, содержится ли линейная оболочка , в линейной оболочке

Найдем ранг матрицы, составленный из координат линейной оболочки

Размерность линейной оболочки L(E) равна рангу системы E (ранг системы - максимальное число ее линейно независимых векторов): dim L(E) = r(E)=3.

Всякая система векторов n-мерного линейного пространства, содержащая более n элементов линейно зависима.

Число линейно независимых векторов линейной оболочки равно 2

Следовательно линейная оболочка содержится в линейной оболочке

3. 2. Найти систему линейных уравнений, подпространство решений которых совпадает с линейной оболочкой системы векторов

, ,

dim L(E) = r(E)=3

3. 3. Найти ортогональный базис подпространства L, заданного системой уравнений, и базис подпространства .

Ранг матрицы равен двум, число неизвестных равно пяти, поэтому всякая фундаментальная система решений этой системы состоит из трех решений.

Решим систему, ограничиваясь первыми двумя линейно независимыми уравнениями и считая свободными неизвестными.

Мы получим общее решение в виде

Берем, далее, следующие три линейно независимых трехмерных вектора

(1, 0, 0), (0, 1, 0), (0, 0, 1). Подставляя компоненты каждого из них в общее решение в качестве значений для свободных неизвестных и вычисляя значения для , мы получим следующую фундаментальную систему решений заданной системы уравнений:

,

,

Ортоганализируем эту систему векторов

Пронормируем каждый вектор этой системы, получим ортонормированную систему векторов

3. 4. Найти собственные значения и собственные векторы матриц.

Составим характеристическое уравнение

Характеристические числа:

Из системы уравнений:

при :

Полагаем, , тогда ,

Собственный вектор:

Полагаем, , тогда ,

Собственный вектор:

Полагаем, , тогда ,

Собственный вектор:

при :

Полагаем, , тогда ,

Собственный вектор:

Таким образом собственные векторы матрицы:

3. 5. Найти линейное преобразование неизвестных, приводящие квадратичные формы, заданные своими матрицами, к каноническому виду. Выяснить, является ли квадратическая форма знакоопределенной.

Примечаний нет.

2000-2024 © Copyright «Kursovaja.su»