книга Курсовая.Су
поиск
карта
почта
Главная На заказ Готовые работы Способы оплаты Партнерство Контакты Поиск
«Программные средства офисного назначения» тема «РЫНОК ТРУДА» ( Контрольная работа, 7 стр. )
«Текстовый процессор «Microsoft Word». Базовые приемы редактирования и форматирования символов и абзацев» ( Контрольная работа, 15 стр. )
"Алгоритмические языки и программирование" кй3увц ( Контрольная работа, 20 стр. )
"АНАЛИЗ УСТОЙЧИВОСТИ ТЕХНИЧЕСКОЙ СИСТЕМЫ" ( Контрольная работа, 22 стр. )
"Аппаратное обеспечение аудиовизуального обучения. Программное обеспечение" ( Реферат, 10 стр. )
"Архивариус" - технология параллельной обработки документов ( Контрольная работа, 24 стр. )
"Графический планшет" * ( Реферат, 15 стр. )
"Информатика" как учебная дисциплина дает комплекс знаний, умений и навыков в области информатики ец422 ( Дипломная работа, 72 стр. )
"Інформатика та комп'ютерна техніка" ( Контрольная работа, 8 стр. )
"Критерии выбора персонального компьютера для дома и офиса" ( Реферат, 15 стр. )
"Проблемы развития устройств ввода информации в ЭВМ" ( Курсовая работа, 26 стр. )
"Программные средства офисного назначения"0 ( Контрольная работа, 6 стр. )
"Решение дифференциальных уравнений" (Белоруссия) ( Курсовая работа, 38 стр. )
"Системы счисления" базового курса информатики (Украина) ( Курсовая работа, 44 стр. )
"Шангри Ла" ( Контрольная работа, 2 стр. )
. Какова роль информационных систем Министерства юстиции РФ в налаживании международного информационного обмена? 7890-8 ( Контрольная работа, 15 стр. )
. Команды обращения к памяти 355335 ( Курсовая работа, 31 стр. )
. Назначение и область применения е3422 ( Контрольная работа, 5 стр. )
. Проблемы безопасности современных информационных систем и пути решения ец524242 ( Контрольная работа, 14 стр. )
. Процентные и дисконтные расчеты.5332 ( Контрольная работа, 16 стр. )
. Стадии и этапы создание информационных систем. Жизненный цикл ИС ( Контрольная работа, 19 стр. )
. Сфера информационных технологий как знаковая система е35242244 ( Контрольная работа, 27 стр. )
. Техника защиты информации. Различные системы защиты информации 56755 ( Контрольная работа, 12 стр. )
. Формы и сроки оплаты акции. Фонды АО. Чистые активы АО…678985 ( Контрольная работа, 22 стр. )
. ЭВМ Классификация к3542асы ( Контрольная работа, 21 стр. )

1. История развития ЭВМ, классификация ЭВМ, основные тенденции развития 3

2. Понятие алгебры Буля 12

Список литературы 16

Компьютеры появились очень давно в нашем мире, но только в последнее время их начали так усиленно использовать во многих отраслях человеческой жизни. Ещё десять лет назад было редкостью увидеть какой-нибудь персональный компьютер - они были, но были очень дорогие, и даже не каждая фирма могла иметь у себя в офисе компьютер. А теперь? Теперь в каждом третьем доме есть компьютер, который уже глубоко вошёл в жизнь самих обитателей дома.

Сама идея создания искусственного интеллекта появилась давным-давно, но только в 20 столетии её начали приводить в исполнение. Сначала появились огромные компьютеры, которые были под частую размером с огромный дом. Использование таких махин, как вы сами понимаете, было не очень удобно. Но что поделаешь? Но мир не стоял на одном месте эволюционного развития - менялись люди, менялась их Среда обитания, и вместе с ней менялись и сами технологии, всё больше совершенствуясь. И компьютеры становились всё меньше и меньше по своим размерам, пока не достигли сегодняшних размеров.

За время, прошедшее с 50-х годов, цифровая ЭВМ превратилась из "волшебного", но при этом дорогого, уникального и перегретого нагромождения электронных ламп, проводов и магнитных сердечников в небольшую по размерам машину - персональный компьютер - состоящий из миллионов крошечных полупроводниковых приборов, которые упакованы в небольшие пластмассовые коробочки.

В результате этого превращения компьютеры стали применяться повсюду. Они управляют работой кассовых аппаратов, следят за работой автомобильных систем зажигания, ведут учёт семейного бюджета, или просто используются в качестве развлекательного комплекса… Но это только малая часть возможностей современных компьютеров. Более того, бурный прогресс полупроводниковой микроэлектроники, представляющей собой базу вычислительной техники, свидетельствует о том, что сегодняшний уровень как самих компьютеров, так и областей их применения является лишь слабым подобием того, что наступит в будущем.

Компьютеры начинают затрагивать жизнь каждого человека. Если вы заболеете, и если вас направят в больницу, то попав туда, в окажетесь в мире, где от компьютеров зависят жизни людей (в части современных больниц вы даже встретите компьютеров больше, чем самих пациентов, и это соотношение будет со временем расти, перевешивая число больных). Постепенно изучение компьютерной техники пытаются вводить в программы школьного обучения как обязательный предмет, чтобы ребёнок смог уже с довольно раннего возраста знать строение и возможности компьютеров. А в самих школах (в основном на западе и в Америке) уже многие годы компьютеры применялись для ведения учебной документации, а теперь они используются при изучении многих учебных дисциплин, не имеющих прямого отношения к вычислительной технике. Даже в начальной школе компьютеры внедряются для изучения курсов элементарной математики и физики. Сами микропроцессоры получили не менее широкое распространение чем компьютеры - они встраиваются в кухонные плиты для приготовления пищи, посудомоечные машины и даже в часы.

Очень широкое распространение получили игры, построенные на основе микропроцессоров. Сегодня игровая индустрия занимает очень большую часть рынка, постепенно вытесняя с него другие развлечения детей. Но для детского организма очень вредно сидеть часами за монитором и отчаянно нажимать на клавиши, так как у ребёнка может развиться своеобразная болезнь - когда у него только одно на уме - компьютер, и больше ничего. Дети с такой болезнью обычно становятся агрессивными, если их начинают ограничивать в доступе к играм. У таких детей сразу пропадает какое-либо желание делать что-то, что не относится к компьютеру и что им не интересно - так они начинают забрасывать свою учёбу, что ведёт к не очень хорошим последствиям.

Уже сейчас компьютеры могут чётко произносить различные фразы, словосочетания, проигрывать музыку и. т. д. Человек теперь может сам записать какие-нибудь слова, предложения и даже музыкальные композиции на своём компьютере для того, чтобы потом компьютер мог их воспроизводить в любое назначенное время.

Компьютеры способны также воспринимать устную речь в качестве сигналов, однако им приходится выполнять большую работу по расшифровке услышанного, если форма общения жестко не установлена. Ведь одну и ту же команду один и тот же человек может произнести несколькими способами, и всё время эта команда будет звучать по-разному; а в целом мире - миллиарды людей, и каждый произносит одну и ту же команду несколькими различными способами. Поэтому в данное время довольно сложно создать компьютер, который будет управляться при помощи голоса человека. Многие фирмы пытаются решить эти проблемы. Некоторые фирмы делают небольшие шажки на пути к данной цели, но всё равно эти шажки пока ещё почти незаметные.

Но проблема распознавания речи является частью более широкой проблемы, называемой распознаванием образов. Если компьютеры смогут хорошо распознавать образы, они будут способны анализировать рентгенограммы и отпечатки пальцев, а также выполнять многие другие полезные функции (сортировкой писем они занимаются уже сейчас). Следует заметить, что человеческий мозг прекрасно справляется с распознаванием образов даже при наличии различных шумов и искажений, и исследования в этой области, направленные на приближение соответствующих возможностей компьютера к способностям человека, представляются весьма перспективными. Если компьютеры смогут достаточно качественно распознавать речь и отвечать на неё в словесной форме, то, по-видимому, станет возможным вводить в них в этой форме программы и данные. Это позволит в буквальном смысле слова говорить компьютеру, что он должен делать, и выслушивать его мнение по этому поводу при условии, конечно, что выдаваемые ей указания чёткие, не содержат противоречий и. т. д.

Устное общение с компьютерами позволит упростить его программирование, однако остаётся нерешённая проблема, на каком именно языке следует с ним общаться. Многие предлагают для этих целей английский язык, но он не обладает точностью и однозначностью, необходимыми с точки зрения компьютера и исполняемых в нём программ. В этой области уже многое сделано, но ещё много предстоит сделать.

Мы часто жалуемся, что другие люди не понимают нас; но пока и сами персональные компьютеры не способны до конца понять нас, или понять, что мы хотим сказать с полуслова. И в течение какого-то периода времени нам придётся довольствоваться такими машинами, которые просто следуют нашим указаниям, исполняя их "с точностью до миллиметра".

Для общения с компьютерами, ещё во времена перфокарт, тогдашние программисты использовали язык программирования, очень похожий на современный Ассемблер. Это такой язык, где все команды, поступающие к компьютеру пишутся подробно при помощи специальных слов и значков{?}.

В наше время усиленно используются языки программирования более высокого уровня, работать с которыми намного легче чем с Ассемблером, так как в них одно слово может заменять сразу несколько команд. И притом большинство языков программирования высокого уровня в названиях команд, используемых при общении с компьютером, используют эквиваленты, названные на английском языке, что, естественно, облегчает программирование. Но в них есть один минус по сравнению с языками, подобными Ассемблеру - в Ассемблере все команды, поступаемые из программы чётко распределяются в памяти компьютера, занимая свободные места, тем самым значительно выигрывая в скорости; а языки высокого уровня не умеют этого, соответственно теряя в скорости исполнения программы. А в нашем сегодняшнем мире всем известно, что: "Время - деньги".

Робототехника также представляет собой перспективную область применения компьютеров. На промышленных предприятиях используется сейчас множество робототехнических устройств; неожиданные и удивительные виды роботов начинают заполнять и научно-исследовательские лаборатории. Существуют множество хирургических и точных производственных операций, которые могут и будут выполняться роботами, управляемыми компьютерами (так как во многих случаях роботы справляются с этими действиями лучше чем люди). Возможность и целесообразность применения роботов в качестве слуг, официантов, билетных кассиров и в других ролях уже нашли своё отражение в продукции кино и телевидения, в книгах. Но, к сожалению, пока - это всё мечты, которые люди постепенно пытаются воплотить в реальность.

Но человеку ведь тоже надо как-нибудь общаться с машиной - ведь кому нужна неуправляемая машина? Сначала люди вели своё общение с компьютерам посредством перфокарт. Перфокарты - это небольшие карточки, на которые нанесены ряды цифр. У компьютера имелся "дисковод", в который вставлялись сами карты и он при помощи маленьких иголочек ставил дырочки на цифрах. Такое общение мало кому доставляло удовольствие - ведь не очень удобно таскать с собой кучи перфокарт, которые после одного использования приходилось выбрасывать.

Но, как и другие технологии, процесс общения человека с искусственным интеллектом претерпел кое-какие изменения. Теперь человек проводит свою беседу с компьютером при помощи клавиатуры и мышки. Это довольно удобно и иногда даже доставляет удовольствие человеку.

Современные вычислительные машины представляют одно из самых значительных достижений человеческой мысли, влияние которого на развитие нуачно-технического прогресса трудно переоценить. Области применения ЭВМ непрерывно расширяются. Этому в значительной степени способствует распространение персональных ЭВМ, и особенно микроЭВМ.

В нашей стране в 1948 г. проблемы развития вычислительной техники становятся общегосударственной задачей. Развернулись работы по созданию серийных ЭВМ первого поколения.

В 1950 г. в Институте точной механики и вычислительной техники (ИТМ и ВТ) организован отдел цифровых ЭВМ для разработки и создания большой ЭВМ. В 1951 г. здесь была спроектирована машина БЭСМ (Большая Электронная Счётная Машина), а в 1952 г. началась её опытная эксплуатация.

В проекте вначале предполагалось применить память на трубках Вильямса, но до 1955 г. в качестве элементов памяти в ней использовались ртутные линии задержки. По тем временам БЭСМ была весьма производительной машиной - 800 оп / с. Она имела трёхадресную систему команд, а для упрощения программирования широко применялся метод стандартных программ, который в дальнейшем положил начало модульному программированию, пакетам прикладных программ. Серийно машина стала выпускаться в 1956 г. под названием БЭСМ - 2.

В этот же период в КБ, руководимом М.А. Лесечко, началось проектирование другой ЭВМ, получившей название ''Стрела''. Осваивать серийное производство этой машины было поручено московскому заводу САМ. Главным конструктором стал Ю.А. Базилевский, а одним из его помощников - Б.И. Рамеев, в дальнейшем конструктор серии ''Урал''. Проблемы серийного производства предопределили некоторые особенности ''Стрелы'': невысокое по сравнению с БЭСМ быстродействие, просторный монтаж и т.д. В машине в качестве внешней памяти применялись 45 - дорожечные магнитные ленты, а оперативная память - на трубках Вильямса. ''Стрела'' имела большую разрядность и удобную систему команд.

Первая ЭВМ ''Стрела'' была установлена в отделении прикладной математики Математического института АН (МИАН), а в конце 1953 г. началось серийное её производство.

В лаборатории электросхем энергетического института под руководством И.С. Брука в 1951 г. построили макет небольшой ЭВМ первого поколения под названием М-1.

В следующем году здесь была создана вычислительная машина М - 2, которая положила начало созданию экономичных машин среднего класса. Одним из ведущих разработчиков данной машины был М.А. Карцев, внёсший впоследствии большой вклад в развитие отечественной вычислительной техники. В машине М - 2 использовались 1879 ламп, меньше, чем в ''Стреле'', а средняя производительность составляла 2000 оп / с. Были задействованы 3 типа памяти: электростатическая на 34 трубках Вильямса, на магнитном барабане и на магнитной ленте с использованием обычного для того времени магнитофона МАГ - 8.

В 1955 - 1956 г. г. коллектив лаборатории выпустил малую ЭВМ М - 3 с быстродействием 30 оп / с и оперативной памятью на магнитном барабане. Особенность М - 3 заключалась в том, что для центрального устройства управления был использован асинхронный принцип работы. Необходимо отметить, что в 1956 г. коллектив И.С. Брука выделился из состава энергетического института и образовал Лабораторию управляющих машин и систем, ставшую впоследствии Институтом электронных управляющих машин (ИНЭУМ).

Ещё одна разработка малой вычислительной машины под названием ''Урал'' была закончена в 1954 г. коллективом сотрудников под руководством Рамеева. Эта машина стала родоначальником целого семейства ''Уралов'', последняя серия которых (''Урал -16''), была выпущена в 1967 г. Простота машины, удачная конструкция, невысокая стоимость обусловили её широкое применение.

В 1955 г. был создан Вычислительный центр Академии наук, предназначенный для ведения научной работы в области машинной математики и для предоставления открытого вычислительного обслуживания другим организациям Академии.

Во второй половине 50 - х г. г. в нашей стране было выпущено ещё 8 типов машин по вакуумно-ламповой технологии. Из них наиболее удачной была ЭВМ М - 20, созданная под руководством С.А. Лебедева, который в 1954 г. возглавил ИТМ и ВТ.

Машина отличалась высокой производительностью (20 тыс. оп / с), что было достигнуто использованием совершенной элементной базы и соответствующей функционально - структурной организации. Как отмечают А.И. Ершов и М.Р. Шура - Бура, ''эта солидная основа возлагала большую ответственность на разработчиков, поскольку машина, а более точно её архитектуре, предстояло воплотиться в нескольких крупных сериях (М - 20, БЭСМ - 3М, БЭСМ - 4, М - 220, М - 222) ''. Серийный выпуск ЭВМ М - 20 был начат в 1959 г.. В 1958 г. под руководством В.М. Глушкова (1923 - 1982) в Институте кибернетики АН Украины была создана вычислительная машина ''Киев'', имевшая производительность 6 - 10 тыс. оп / с. ЭВМ ''Киев'' впервые в нашей стране использовалась для дистанционного управления технологическими процессами.

В то же время в Минске под руководством Г.П. Лопато и В.В. Пржиялковского начались работы по созданию первой машины известного в дальнейшем семейства ''Минск - 1''. Она выпускалась минским заводом вычислительных машин в различных модификациях: ''Минск - 1'', ''Минск - 11'', ''Минск - 12'', ''Минск - 14''. Машина широко использовалась в вычислительных центрах нашей страны. Средняя производительность машины составляла 2 - 3 тыс. оп / с.

При рассмотрении техники компьютеров первого поколения, необходимо особо остановиться на одном из устройств ввода - вывода. С начала появления первых компьютеров выявилось противоречие между высоким быстродействием центральных устройств и низкой скоростью работы внешних устройств. Кроме того, выявилось несовершенство и неудобство этих устройств.

1. Анатомия компьютера (мультимедийная энциклопедия). Программный продукт: Институт проблем искусственного интеллекта, Донецк, 1996г.

2. Домашний компьютер. (Ежемесячный журнал)

3. Жигарев А.Н. Основы компьютерной техники. Машиностроение. Ленинг. отд-ие, 1987 .

4. Кузнецов Е.Ю., Осман В.М. Персональные компьютеры и история их развития: Учеб. пособие для ВТУЗов - М.: Высш. шк. -1991

5. Персональный компьютер от А до Я (мультимедиа энциклопедия). АО РТА Лазер Дейта, 1994г.

6. Растригин Л.А. С компьютером наедине - М.: Радио и связь, - 1990

Примечаний нет.

2000-2024 © Copyright «Kursovaja.su»